Skip to main content
COVID-19 is an emerging, rapidly evolving situation.

Get the latest public health information from CDC:
Get the latest research information from NIH:

Profile Image


Yeka Aponte, Ph.D.

Neuronal Circuits and Behavior Unit

Biomedical Research Center
Room 07A707
251 Bayview Boulevard Suite 200
Baltimore MD 21224
Office: 443-740-2690
Lab: 443-740-2690

Dr. Aponte received her Ph.D. from the University of Freiburg. Working with Prof. Dr. Peter Jonas she studied the functional properties of hyperpolarization-activated cation channels and dendritic calcium dynamics in fast-spiking hippocampal interneurons. During her postdoctoral work with Dr. Scott Sternson at the Janelia Farm Research Campus of the Howard Hughes Medical Institute (JFRC/HHMI), she studied neuronal circuits controlling feeding behavior using optogenetic techniques in awake, behaving mice. She also applied in vivo electrophysiological methods to molecularly-defined neuron populations. She joined the NIDA/IRP as an Earl Stadtman Tenure-Track Investigator and her laboratory uses a combination of optogenetics, chemogenetics, electrophysiology, two-photon fluorescence endomicroscopy, and behavioral assays to elucidate the neuronal mechanisms regulating the rewarding nature of food intake and drug abuse.

Our interest is to understand how genetically-identified cell types and their projections drive behaviors essential for survival. Using the mouse as our model system, we apply optogenetics and chemogenetics to manipulate neuronal circuits in awake, behaving mice. In addition, we use a combination of electrophysiology, two-photon fluorescence endomicroscopy, and behavioral assays to elucidate the neuronal basis of survival behaviors, such as feeding, and to determine how these neuronal circuits drive the rewarding and addictive nature of food intake. Evidence for the addictive properties of food has been growing progressively throughout the last decade. Both addiction and overeating are disorders by which individuals learn rewarding associations between stimuli such as drugs of abuse and highly palatable food. Therefore, our laboratory is interested in understanding the addictive aspects of feeding behaviors. We study this topic at the level of neuronal circuits in the context of behaviors, cell types, and synaptic connectivity. Neuronal circuits are composed of diverse collections of cell types, each having a distinct set of synaptic connections and performing specific functions. To understand how neuronal circuits drive behaviors, it is essential to examine the function of specific cell types in the circuit. However, studies have been mostly unable to identify the cell types involved in specific behaviors. Furthermore, experiments to date have largely been unable to determine when specific cell types are active to provide quantitative relationships between circuit activity and behavior. Ultimately, understanding the mechanisms regulating food intake and the rewarding and addictive nature of food will enhance our ability to battle disorders such as obesity, diabetes, anorexia, bulimia, and addiction.

Staff Image
  • 1) Lagerlöf, Olof; Slocomb, Julia E; Hong, Ingie; Aponte, Yeka; Blackshaw, Seth; Hart, Gerald W; Huganir, Richard L (2016)
  • The nutrient sensor OGT in PVN neurons regulates feeding
  • Science, 351 (6279), pp. 1293–1296, 2016, ISSN: 1095-9203 (Electronic);
  • 2) Bocarsly, Miriam E; Jiang, Wan-Chen; Wang, Chen; Dudman, Joshua T; Ji, Na; Aponte, Yeka (2015)
  • Minimally invasive microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain
  • Biomed Opt Express, 6 (11), pp. 4546–56, 2015, ISBN: 2156-7085 (Print); 2156-7
  • 3) Aponte, Yexica; Atasoy, Deniz; Sternson, Scott M (2011)
  • AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training.
  • Nat Neurosci, 14 (3), pp. 351–355, 2011, ISSN: 1546-1726 (Electronic); 1
  • 4) Aponte, Yexica; Bischofberger, Josef; Jonas, Peter (2008)
  • Efficient Ca2+ buffering in fast-spiking basket cells of rat hippocampus
  • J Physiol, 586 (8), pp. 2061–2075, 2008, ISSN: 1469-7793 (Electronic);
  • 5) Aponte, Yexica; Atasoy, Deniz; Sternson, Scott M (2008)
  • A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping
  • J Neurosci, 28 (28), pp. 7025–7030, 2008, ISSN: 1529-2401 (Electronic);
  • 6) Aponte, Yexica; Lien, Cheng-Chang; Reisinger, Ellen; Jonas, Peter (2006)
  • Hyperpolarization-activated cation channels in fast-spiking interneurons of rat hippocampus
  • J Physiol, 574 (Pt 1), pp. 229–243, 2006, ISSN: 0022-3751 (Print); 0022-3
  • 7) Tortorici, Victor; Nogueira, Lourdes; Aponte, Yexica; Vanegas, Horacio (2004)
  • Involvement of cholecystokinin in the opioid tolerance induced by dipyrone (metamizol) microinjections into the periaqueductal gray matter of rats
  • Pain, 112 (1-2), pp. 113–120, 2004, ISSN: 0304-3959 (Print); 0304-3
View Pubmed Publication